
in

in ii

COLLABORATORS

TITLE :

in

ACTION NAME DATE SIGNATURE

WRITTEN BY August 8, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

in iii

Contents

1 in 1

1.1 main . 1

1.2 author . 2

1.3 gc_commands . 2

1.4 installation . 6

1.5 introduction . 7

1.6 prefs . 7

1.7 readargs . 9

1.8 tbstyle . 10

1.9 usage . 10

1.10 visualedit . 12

1.11 index . 14

in 1 / 15

Chapter 1

in

1.1 main

==
>>>>>> AutoGui.gc by D. Keletsekis <<<<<<<<<<<<<<<<<<<<<<<<<<<
==
A Gui4Cli gui for the automatic creation of guis for programs,
based on their Command Line Arguments.
==

Introduction
What it is..

Instalation
Where to put it..

Usage
How to do it..

Prefs
Change its parameters..

CLI arguments
What those /N/S things mean..

Editing
How to move gadgets about..

Gui4Cli
All the available commands..

Author
It wasn’t his fault!..

==
16/2/2000 - dck@hol.gr - http://users.hol.gr/~dck/gcmain.htm
==

in 2 / 15

1.2 author

--
This program is WhateverWare(TM).
To use it, you must own or have access to a computer
that can run it. Otherwise I’m comming after you!
--

The Author of this mess is :

Dimitris C. Keletsekis
14 King George str.,
Athens 10674,
Greece

Email : dck@hol.gr

This software is provided as-is. Use it at your own risk.
No warranties are made or implied.

--

1.3 gc_commands

Gui4Cli commands
==

(This is a listing of all Gui4Cli commands and events)

Parser Commands :

NewFile NewFileName
TextFile FileName

--------------------------- GLOBAL COMMANDS ------------------------

WinBig L T W H Title
WinSmall L T W H
WinType MASK (Close|Drag|Zoom|Depth|Borderless|Backdrop|RIGHT|BOTTOM)
WinOut ConsoleSpecification
WinOnWin GuiName LeftOffset TopOffset
WinOnMouse LeftOffset TopOffset
Screen PublicScreenName
WinFont FontName Size UL|BD|IT(Mask)
WinBackground SOLID|PATTERN|ICON|IMAGE APen|Name BPen
UseTopaz
NoFontSense
VarPath VariableSearchPath

in 3 / 15

ResInfo FontHeight ScreenWidth ScreenHeight
ShareMenu GuiFile

------------------------------ EVENTS ------------------------------

xButton L T W H Title
xCheckBox L T W H Title Variable OnText OffText ON|OFF
xVSlider L T W H Title Variable Min Max Current ShowStr
xHSlider L T W H Title Variable Min Max Current ShowStr
xTextIn L T W H Title Variable StartingText Bufflength
xCycler L T W H Title Variable
xRadio L T W H Variable Spacing
xArea L T W H COMP|BOX|NONE
xPalette L T W H

xListview L T W H Title Variable File|Dir Offset NUM|TXT|MULTI|DIR
LV Hooks LVDirHook HookID, LVHook HookID

xMemu Menu Item SubItem Shortcut
xIcon L T IconName (no .info)
xAppMenu AppMenuName Variable ONOFF
xAppIcon L T IconName Title Variable ON|OFF
xAppWindow Variable

xPipe PipeFileName ON|OFF
xTimer TIME|SINGLE|REPEAT Time|Interval ON|OFF
xNotify File|Dir ON|OFF
xHotKey KeyCombination ON|OFF

xRoutine RoutineName
xOnHelp ON|OFF|AUTO
xOnKey Letter|#KeyValue
xOnReturn LaunchID
xOnJump Variable
System Events xOnLoad, xOnOpen, xOnClose, xOnQuit
Other Events xOnActive, xOnFail, xOnDiskIn etc..

-------------------------- GRAPHIC Events -------------------------

Graphics The following commands :
BOX L T W H IN|OUT BUTTON|RIDGE|ICONDROP
CTEXT L T Text FontName size FGpen BGpen UL|BD|IT|EMBOSS|SIZE(mask)
LINE L T L T ColorNo
SQUARE L T W H ColorNo FILL|NOFILL
CIRCLE centerL centerT xradius yradius ColorNo FILL|NOFILL
ICON L T IconName (no info)

Text L T W H Text Length BOX|NOBOX
Gauge L T W H IN|OUT BUTTON|RIDGE|ICONDROP APEN BPEN PERCENT
xTextBox L T W H Title Text

--------------------- ATTRIBUTES & Event MODIFIERS ------------------

Gadget Modifiers :

in 4 / 15

GadID IDNumber
GadHelp HelpText
GadFont FontName FontSize MASK(Underline|Bold|Italics)
GadTitle ABOVE|BELOW|LEFT|RIGHT
GadKey Letter (or #ASCII value)
GadTxt LEFT|CENTER|RIGHT
LVDirHook HookID
Local Variables/var/var...

Attr AttributeName Value (IMPORTANT)

--------------------------- EVENT COMMANDS ---------------------------

Controlling Gadgets :

SetGad GuiFile GadIDs ON|OFF|SHOW|HIDE (Arexx capable)
Update GuiFile GadID Value (Arexx capable)
ChangeArg GuiFile GadID ArgNumber NewValue
ChangeGad GuiFile GadID L T W H Title
ReDraw GuiFile
PartReDraw GuiFile L T W H
GadReDraw GuiFile LeftGad Top Right Bottom Offset
ChangeIcon GuiFile GadID L T NewIconName
SetAttr GuiFile/GadID AttributeName Value
SetGadValues GuiFile

Control Statements :

If/ElseIf/Else/Endif/And.. Argument Operator Argument
IfExists/Else/EndIf.. SYSTEM Name|~Name
While/EndWhile/And/Or Argument Operator Argument
Mark/Goto MarkName
Gosub/Return GuiName RoutineName (ARexx capable)
DoCase/Case/Break/EndCase (DoCase) Argument - Case Operator Argument
Stop

--- All Commands below this line are ARexx capable ----

Quit

DOS Commands :

Run, CLI CommandLine
SendRexx PortName CommandLine
Wait SYSTEM Name|~Name TimeOut
MakeDir DirName
Assign Device: Path|REMOVE
Rename OldFile NewFile
Launch LaunchID CommandLine

FailAt ErrorNumber

Recursive commands :

in 5 / 15

Copy FileName (with wild characters) Destination
Delete FileName (with wild characters)
Action COPY|COPYNEW|MOVE|DELETE|SIZE|PROTECT|CLI File/Dir Destination
LVAction COPY|COPYNEW|MOVE|DELETE|SIZE|PROTECT|CLI Destination

Note : DOS and Recursive Commands always set the $$RetCode

Handling GUIs :

Load/Open... GuiLoad GuiFullPathName - GuiOpen/GuiClose/GuiQuit GuiName
GuiRename OldGuiName NewGuiName
Status
Info GUI|GADGET|PALETTE|IMAGE Guiname|Guiname/GadID|ImageAlias

Handling Variables :

SetVar Variable String (or var = string)
DelVar Variable
AppVar Variable Text
CutVar SourceVar CUT|COPY CHAR|WORD|LINE Amount DestinationVar
Counter Variable INC|DEC Amount
Append File String
JoinFile Path File Variable
ParseVar Variable
CalcVar ResultVar Argument operator Argument
ReadVar FileName Start Length Variable
SearchVar Variable String CI|CS FIRST|NEXT
RepVar Variable OldString NewString CI|CS

Extract FromVar ITEM ToVar

ListView Commands :

LVUse GuiFile GadID
LVDel LineNumber
LVPut NewText
LVChange NewFromFile
LVSort ASC|DSC|%FieldName
LVFind String
LVAdd String
LVInsert (Before)LineNumber String
LVClear
LVSave FileName
LVMove +-Offset|#LineNumber
LVGo first|next|prev|last|#LineNumber
LVSearch string CI|CS First|Next
LVRep OldString NewString CI|CS
LVMode NUM|TXT|MULTI|DIR
LVClip CUT|COPY lines|-1 ADD|PASTE|INSERT Gui ID
LVSwitch Gui ID

LVMulti First|Next|On|Off|All|None|Show
LVDir Parent|Root|Disks|All|None|Refresh|NoRefresh|#DirName

DataBase ListView Commands :

DBSum ALL|SELECTED|UNSELECTED %FieldName ResultVar

in 6 / 15

RecSort %FieldName

Multimedia commands :

SetColor GuiFile ColorNumber R G B
Palette LOAD|SAVE|SET|GET|REMAP Src Dest
Speak Text
Images

LOADIMAGE ImageFile Alias ScreenName|NoRemap
FREEIMAGE Alias
IMAGE Left Top Alias
CHANGEIMAGE GuiFile GadID Left Top Alias

Sound Effects
LOADSOUND FileName Alias
FREESOUND Alias
PLAYSOUND Alias
SETSOUND Alias VOLUME/SPEED value

Various Commands :

SetScreen GuiFile ScreenName
GuiScreen GuiFile FRONT|BACK
GuiWindow GuiFile ON|BIG|SMALL|FRONT|BACK|WAIT|RESUME
SetWinTitle GuiFile NewTitle

SetScreenTitle GuiFile NewTitle
ReqFile L T W H Title SAVE|LOAD|MULTI|DIR Variable DirName
CD NewDirectoryName
Delay Ticks
EZReq Text Choices Variable
Say Text
Set [parameter] [value]
SetStack StackSize
MakeScreen ScreenName Depth|(W/H/D/Mode) Title
KillScreen ScreenName
TTGet FullPath/IconName (without ".info")
BreakTask TaskName CDEF(signals)
Flash
MoveScreen GuiName/#ScreenName X Y
Workbench Open/Close
SetPointer GuiName #Image/DEFAULT/HIDE

1.4 installation

Installation
==

- Copy the AutoGui directory anywhere..

The Gui4Cli version included here is version 3.8.3
If you have Gui4Cli installed, and your version is older,
copy it over..

in 7 / 15

Otherwise..

- Copy the binaries "Gui" and "Gui4Cli" to your C: directory.
This is the minimum Gui4Cli installation.

The full version of Gui4Cli can be found on Aminet or at:
- http://users.hol.gr/~dck/gcmain.htm

1.5 introduction

Introduction
==

The Amiga OS has a very usefull funtion, ReadArgs(), which
will read in CLI arguments according to a given template,
something like: "FILE/A,OPTION/N/A". This function is used by
most programs to get their arguments when launched from a
shell. Usually, if you type a program name followd by a "?"
(>c:List ?) you’ll get a list of all the program’s arguments.
That’s ReadArgs() at work..

AutoGui enables you to create a fully functioning gui, based
on these command line arguments.

An argument can be a string (in this case a TextIn gadget will
be used) or a "/N" number (a TextIn gadget allowing only numbers),
or a "/S" switch (a CheckBox).

AutoGui will take these facts, do some calculations and create a
Gui4Cli script containing all the relevant gadgets, positioned
in a sensible way. TextIn gadgets will also have a file request
button next to them.

The gui will be fully functioning and you will be able to run it
right off.

Gui4Cli allows you to visually edit the gui while it is running,
so you can move the gadgets around to fix anything you don’t
like. You can also change the code and add/change its behaviour
in any way. The Gui4Cli languange is powerfull and you can do
a great many things with it (like add comodities, pipes, file
notifications, make screens and many many other things..)

1.6 prefs

in 8 / 15

Preferences
===

The Prefs gui allows to set some global parameters that will
be used in making the gui. You don’t have to change anything
here.. the defaults should be good enough for most.

This is what the gadgets do:

- "Gui Width"
Is the.. gui width.. What more can I say..

- "Window Margins"
is the distance of titles etc from the window border.

- "Title Margins"
is the distance (in pixels) that will be used in calculating how
much room to leave for the gadget titles. If the titles fall on
the window borders or on other gadgets, you should increase this..

- "Gadget distance"
This is the vertical distance that gadgets will have from each
other.

- "Box Attributes"
The gui has 2 decorative boxes, unless you also choose the "Pipe:
output" in which case it will have 3 boxes (one more in the middle)
The look of these boxes can be changed by changing the strings
contained in the 3 Text gadgets - this is

what they mean
..

- "Program Stack"
This is the amount of stack to give a program when launching it.
The default value is 4k and you’ll seldom have to change it, but
some programs require more.

- "Add Pipe: Output"
Will allocate and open a PIPE: device and will redirect the
command’s output into it. A TextBox gadget will be added in the
middle of the gui, displaying the last line of the output.
This is useful for commands that have a single line, or slow
output (like format or something..). For a command like "list"
where you get lots of fast output, this is useless..

- "Font"
You can choose a global window font here that will be used for
all titles and gadgets. Choose the font size (inside the font
dir). If this field is left blank the gui will use the users
prefered screen font (which is best). If you set a font, keep in
mind that if other people use your gui they may not have your
fonts..

- "Titles"
Here you may choose a style for the gadget titles

in 9 / 15

1.7 readargs

Command Line Argument Template
==

(This is an edited extract from the ReadArgs() function autodocs..)

ReadArgs() parses the commandline according to a template that is
passed to it. This specifies the different command-line options and
their types. A template consists of a list of options. Options are
named in "full" names where possible (for example, "Quick" instead of
"Q"). Abbreviations can also be specified by using "abbrev=option"
(for example, "Q=Quick").

Options in the template are separated by commas.
Options can be followed by modifiers, which specify things such as
the type of the option. Modifiers are specified by following the
option with a ’/’ and a single character modifier. Multiple modifiers
can be specified by using multiple ’/’s. Valid modifiers are:

/S - Switch. This is considered a boolean variable, and will be
set if the option name appears in the command-line.

/K - Keyword. This means that the option will not be filled unless
the keyword appears. For example if the template is "Name/K",
then unless "Name=<string>" or "Name <string>" appears in the
command line, Name will not be filled.

/N - Number. This parameter is considered a decimal number, and will
be converted by ReadArgs. If an invalid number is specified,
an error will be returned.

/T - Toggle. This is similar to a switch, but when specified causes
the boolean value to "toggle". Similar to /S.

/A - Required. This keyword must be given a value during command-line
processing, or an error is returned.

/F - Rest of line. If this is specified, the entire rest of the line
is taken as the parameter for the option, even if other option
keywords appear in it.

/M - Multiple strings. This means the argument will take any number
of strings, returning them as an array of strings. Any arguments
not considered to be part of another option will be added to this
option. Only one /M should be specified in a template. Example:
for a template "Dir/M,All/S" the command-line "foo bar all qwe"
will set the boolean "all", and return an array consisting of
"foo", "bar", and "qwe".

There is an interaction between /M parameters and /A parameters.
If there are unfilled /A parameters after parsing, it will grab

in 10 / 15

strings from the end of a previous /M parameter list to fill the
/A’s. This is used for things like Copy ("From/A/M,To/A").

1.8 tbstyle

* xTEXTBOX style:

apen/bpen/bgpen/border/recess

- apen, bpen : these are the pens that will be used to draw the
title text. "bpen" will be used as shadow/outline

- bgpen : this is the background color of the textbox. You
can give a -1 if you do not want a background.

- border : NONE, PLAIN, BUTTON, RIDGE or ICONDROP
(and I’m not going to explain what each one is..)

- recess : "IN" to have the border recessed, OUT otherwise.

Example :
> 2/1/3/BUTTON/OUT

1.9 usage

AutoGui Usage
===

* Getting the Arguments:

The first thing to do in making a gui is see what arguments
it should handle. To do that, we need to know the command or
program it should run so as to get its arguments.

When you load the gui you will be prompted to choose a
command. You should choose a CLI command or other program
that uses the ReadArgs template

ReadArgs template
- most do..

AutoGui will run the command like: "Run command ? >T:Temp"
If all goes well, the command’s template will be stored into
the file T:Temp and AutoGui will load it from there into the
gui’s listview. You may get error reports here, since many
commands complain heavily if no arguments are provided.
Others may do nothing at all..

You may, at any time, also click on "NEW.." and load another
command. The current arguments will be cleared and the new
command will be run again to get its arguments & list them.

in 11 / 15

* What about if the command does not behave ?

If AutoGui can not extract the CLI template from the program,
you can manually enter it, by:

- Choosing the command to run, with "COM"

- Adding the arguments one by one, with "ADD"

Note that with a little imagination you can use this method
to make custom guis for programs that don’t use the standard
ReadArgs template (like unix progs etc)

* Editing the Arguments:

Once you have a list of arguments you can re-arrange or edit them.

Use "UP" or "DOWN" to re-arrange the arguments. AutoGui will
use the arguments as it finds them, working out the positioning
as it goes along. A string gadget will take up the full
width of the window, while you can have many checkboxes or
number gadgets in one line, so move them about as you see
fit to get the look you want. Note that after the gui is created
you can

visually edit
it and move or resize the gadgets all

over the place..

You can also "EDIT" the arguments, changing them, but be
carefull that the program accepts them.

Some arguments may have two forms: "CS=CASESENSITIVE/K".
In this case AutoGui will throw away the "CS" and only
use the "CASESENSITIVE" part. You may want to edit that..

* Controlling the look of the gui:

The
Prefs..
button will open another gui and let you adjust

some of the parameters AutoGui will use in creating your gui.

* Ta Daaa!..:

You are now set.. Click on "CREATE!" and be amazed..

The gui that will pop up is fully functioning, writen in the
proper style, and ready to run. You may use it, or edit it in
any way..

Then hit "NEW.." and make another..

in 12 / 15

1.10 visualedit

VISUAL EDITING
===

Gui4Cli GUIs can be edited while they are running. This is done
by using the CONTROL key together with the mouse :

Moving Gadgets :

Press CONTROL-MouseClick on a Gadget or Graphic to Select it.
You will see that an outline of the gadget is drawn. You can
now let go of the CONTROL button and move the gadget outline
around in your window.

When you are satisfied with the new position, just click the
mouse and the gadget/graphic will be redrawn to this new position.

You can also use CONTROL-H instead of CONTROL-MouseClick to
select a gadget, and CONTROL-H again to place it where you
want.

This comes in handy if :
(a) you are running programs like CycleToMenu etc which may
interfere with your mouse clicks, or
(b) you are trying to paste some gadget over another gadget
in which case GadTools may eat-up the mouse clicks.

There is also a GRID available, which makes lining up the gadgets much
easier. By default the grid size is 1 which means "no grid".
You can set the grid size to any size you want, with "SET GRID 5"
(5 is a good size..) - or through the Prefs gui.

Resizing Gadgets :

You can resize a gadget by clicking on it’s bottom right corner.

Note that some gadgets (such as ICONs, Images, xICONs and
CTEXT) can not be resized.

Also note that to resize a listview you have to click on the
listview’s bottom right corner - *not* on the arrow buttons
(unless you use control-h).

Since LVs adjust their size automatically to show as many
lines as possible, they may be a little difficult to select
correctly for resizing..

Resizing the window :

in 13 / 15

You can enlarge or reduce the window size by resizing the
window while holding down the CONTROL key. In this case, the
window is resized, while the gadget sizes/positions remain the
same.

Cloning gadgets :

After selecting a gadget you can "clone" it (i.e. make a copy) by
using the CONTROL-J shortcut. In this case a copy of the gadget will
be created and drawn where the mouse is at.

Note that *only* the gadget information is copied.
The gadgets modifiers and it’s commands are *not* copied.

Inter-GUI Cloning :

After selecting a gadget you can also place it in another
Gui4Cli window. In this case a copy of the gadget will be created
and drawn into the window where you clicked.

This enables you to make new guis by copying gadgets from other
guis - in effect, a gui editor.

Here also, *only* the gadget information is copied.

Deleting gadgets :

You can delete a gadget or graphic by selecting it and pressing
the DELETE key.

Saving your GUIs :

Once you have made the GUI of your dreams, you can save it by
pressing CONTROL-G. A simple requester will ask you if you
want to save the gui.

IMPORTANT notes on saving :

- NEVER - load a gui, then change it’s file by manually editing
it and then edit & save the gui. To keep all your file notes
etc in tact, Gui4Cli remembers the line numbers of the gadgets
when the file is loaded, and then, when saving, it goes and
changes only these lines, leaving everything else untouched.

So if you have meanwhile changed the gui manually the gadget
line numbers will have changed and ... well you’re looking
for trouble, that’s what!

Same will happen if you visually edited the file before and
added 1 or more xCYCLER or xRADIO type gadgets. Since these need
extra lines to describe the fields they’ll have, it throws the
whole numbering scheme off if you try to save the gui again
without having reloaded it first.

in 14 / 15

Hitting CONTROL-R to reload the gui (if you have changed it
manually or have added cycler/radio gads) *before* starting
to visually edit it, will reload and thereby refresh the correct
line numbers etc.

Gui4Cli will check and tell you if it doesn’t find the edited
gadget where it should be in the file.

- BE VERY CAREFUL when saving multi-gui files, if you are trying
to edit more than one of the file’s guis at the same time.
Reloading the gui will *not* refresh the gadget line numbers
of the other guis, since only the active gui is reloaded..

If you must edit many guis of a multi-gui file at the same time,
then reload *all* the file’s guis everytime you save any one of
them.

- If you have deleted existing gadgets, then the lines of
the original GUI describing the gadget and all it’s attached
commands will be commented (i.e. a ; will be added in front)

This will be done for all the lines following the gadget, until
the next gadget is declared, or the end of file is reached.

- If you have created new gadgets, these will be added at the
bottom of the GUI file. If it’s a multi-gui file, then at
the end of the given gui within the file.

- Any RESIZE_BIG/RESIZE_SMALL commands that the gui file may
contain will be commented out and the gui will be saved at
it’s current size.

Quirks :

- Circles are selected by clicking on their lower right quarter.

- xTEXTIN gadgets and Boxes (even filled ones) are selected by
clicking on their border. You have to click *exactly* on a pixel
on their border.

- TextIn gads (and maybe some others) will give you a little
trouble if you try to paste them over themselves (i.e. move
them a tiny bit. Try to pick them up from their edges..

1.11 index

Guide INDEX :

Author

GC_Commands

in 15 / 15

Installation

Introduction

Prefs

ReadArgs

TBStyle

Usage

VisualEdit

	in
	main
	author
	gc_commands
	installation
	introduction
	prefs
	readargs
	tbstyle
	usage
	visualedit
	index

